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Abstract. We consider generic Garbled Circuit (GC)-based techniques for Secure Function Eval-
uation (SFE) in the semi-honest model.
We describe efficient GC constructions for addition, subtraction, multiplication, and comparison
functions. Our circuits for subtraction and comparison are approximately two times smaller (in
terms of garbled tables) than previous constructions. This implies corresponding computation and
communication improvements in SFE of functions using our efficient building blocks. The techniques
rely on recently proposed “free XOR” GC technique.
Further, we present concrete and detailed improved GC protocols for the problem of secure integer
comparison, and related problems of auctions, minimum selection, and minimal distance. Perfor-
mance improvement comes both from building on our efficient basic blocks and several problem-
specific GC optimizations. We provide precise cost evaluation of our constructions, which serves as
a baseline for future protocols.

Keywords: Secure Computation, Garbled Circuit, Millionaires Problem, Auctions, Minimum Dis-
tance

1 Introduction

We are motivated by secure function evaluation (SFE) of integer comparison, and related problems such
as auctions and biometric authentication. For this, we propose new, more efficient SFE protocols for
these functions. More specifically, we propose improved constructions for subtraction, and comparison
functions, and demonstrate their advantages on the example of our motivating applications.

Comparison is a widely used basic primitive. In particular, it plays an especially important role in
financial transactions, biometric authentication, database mining applications, etc.

Auctions. With the growth of the Internet and its widespread acceptance as the medium for electronic
commerce, online auctions continue to grow in popularity. Additionally, many sellers consider the “name
your price” model. For example, sites such as priceline.com ask a buyer for a price he is willing to pay
for a product, and the deal is committed to if that price is greater than a certain (secret) threshold.
In many such situations, it is vital to maintain the privacy of bids of the players. Indeed, revealing an
item’s worth can result in artificially high prices or low bids, specifically targeted for a particular buyer
or seller. While a winning bid or a committed deal may necessarily reveal the cost of the transaction,
it is highly desirable to keep all other information (e.g., unsuccessful bids) secret. There has been a
large stream of work dedicated to ensuring privacy and security of online auctions and haggling (e.g.,
[Cre00,BK06,NPS99]). Our work complements, extends, and builds on it.

Biometric authentication. Widespread adoption of biometric authentication (e.g., fingerprint or face
recognition) is causing strong concerns of privacy violations. Indeed, improper use of biometric informa-
tion has far more implications than “simple” collection of personal information. Adoption of privacy-
preserving biometric authentication is highly desired and will benefit the users and the administrators
of the systems alike. Because biometric images are never scanned perfectly, the identity of the user is
determined by proximity of the scanned and stored biometrics. It is natural, therefore, that threshold
? This paper will appear at CANS 2009 [KSS09].
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comparisons are frequently employed in such identification systems. Further, in some multi-user systems,
it may be desired to simply find the closest match in the database. In such systems, secure comparison
would be also extensively used.

State of the art for secure comparison and related algorithms. Starting with the original paper
of Yao [Yao82], secure comparison, also referred to as the “two Millionaires problem”, has attracted
much attention [Yao86,Fis01,MNPS04,Kol05]. A variety of techniques are employed in these solutions –
homomorphic encryption, evaluation of branching programs, Garbled Circuit (GC).

Today, in the standard computational setting, the most efficient protocol is the simple evaluation of
the generic GC. Indeed, the size of the comparison circuit is quite small (linear in the size of the inputs),
and its secure evaluation is rather efficient (linear number of Oblivious Transfers (OT) and evaluations
of a cryptographic hash function, such as SHA-256).

Most popular alternative solutions are based on homomorphic encryptions. For comparison, they offer
a similar complexity compared to GC, as they still must perform a linear (in the input) number of public
key operations by both players. However, GC offers more flexible and cheap programming possibilities,
due to its low cost of manipulation of boolean values. In contrast, homomorphic encryptions are not
suitable, e.g., for branching based on the encrypted value which can be achieved only with much more
expensive techniques than GC).

In sum, GC approach is a clear choice for integer comparison, its extensions, such as auctions, simple
integer manipulations (addition and even multiplications) and a variety of other problems that have
small circuit representation. We build our solutions in this framework.

Our contributions. As justified above, our work is based on GC. We advance the state of the art of
SFE for subtraction and comparison functions, by constructing their more efficient GC representations.
We work in the semi-honest model which is appropriate for many application scenarios.

More specifically, our optimizations take advantage of the recently proposed method of GC construc-
tion [KS08], where XOR gates are evaluated essentially for free (one XOR operation on keys, and no
garbled table entries to generate or transfer). We show how to compute comparison and other basic
functions with circuits consisting mostly of XOR gates. This results in reduction of the size of GC (i.e.,
the size of garbled tables) by approximately half (see Table 2 for detailed comparison). We note that
the method of [KS08] (and thus our work) requires the use of a weak form of Random Oracle, namely of
correlation-robust functions [IKNP03].

As further contribution, we then follow through, and discuss in detail GC-based constructions for the
Millionaires problem, computing first-price auctions and minimum Hamming- or Euclidian distance. In
addition to improvements due to our new building blocks, our protocols benefit from a number of GC-
based optimizations. In addition to establishing a new performance baseline for these problems, we aim
to promote GC as a very efficient solution, and prevent its frequent unfair dismissal as an “impractical
generic approach”.

Related work. SFE (and in particular GC), and secure comparison has received much attention in the
literature, all of which we cannot possibly include here. In this section we summarize relevant work to
give the reader a perspective on our results. We discuss additional related work (on which we improve)
in the individual sections of the paper.

Circuit-Based Secure Function Evaluation. GC technique of SFE was introduced by Yao [Yao86], with a
formal proof of security (in the semi-honest model) given in [LP04]. Extensions of Yao’s garbled circuit
protocol to security against covert players were given in [AHL05,GMS08], and against malicious players
in [JS07,LP07,NO09]. Our constructions rely on the recent work of [KS08], where a GC technique is
proposed that allows evaluation of XOR gates “for free”, i.e., with no communication and negligible
computation costs. In [KS08] improved circuit constructions for multiplexer, addition and (in-)equality
testing are presented. Our main contribution – the building block constructions – further improve their
proposals (e.g., subtraction and comparison are improved by a factor of two.

Secure Two-Party Comparison. The first secure two-party comparison protocol was proposed in [Yao82],
and today GC [Yao86] is the most efficient solution to this problem as shown in this paper: our solution for
comparing two `-bit numbers requires 16`t bit offline communication and 3`t bit online communication,
where t is a symmetric security parameter (i.e., length of a symmetric key).
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Homomorphic encryption is another popular tool for comparison. The protocol of Fischlin [Fis01] uses
the Goldwasser-Micali XOR-homomorphic encryption scheme [GM84] and has communication complex-
ity `T (κ+1), where κ is a statistical correctness parameter (e.g., κ = 40) and T is an asymmetric security
parameter (i.e., size of an RSA modulus). The comparison protocol of [BK04] uses bitwise Paillier encryp-
tion and has communication complexity 4`T . This protocol was improved in [DGK07,DGK08b,DGK08a]
to communication complexity 2`T by using a new homomorphic encryption scheme with smaller ci-
phertext size. These two-party protocols were extended to comparisons in the multi-party setting with
logarithmic and linear round complexity in [GSV07].

Minimum Selection. A two-party protocol for finding k-Nearest Neighbors was given in [SKK06], and
improved from quadratic to linear communication complexity in [QA08]. Our protocol for finding the
nearest neighbor is a more efficient protocol for the special case k = 1. A simple protocol to select the
minimum of homomorphically encrypted values based on the multiplicative hiding assumption was given
in [Ker08] in the context of privacy-preserving benchmarking. However, multiplicative blinding reveals
some information about the magnitude of the blinded value. Our minimum selection protocol can be
used as a provably secure replacement of this protocol. Finally, we note that in our minimum Hamming
distance protocol we use several steps of the Hamming distance protocol of [JP09].

Efficient circuits for addition and multiplication. Boyar et al. [BP96,BPP00,BDP00] considered multi-
plicative complexity3 of symmetric functions (i.e., functions only dependent on the hamming weight of
their inputs). As a corollary, Boyar et al. describe efficient circuits for addition (and thus multiplication,
via Karatsuba-Ofman method [KO62]). Our subtraction and comparison building blocks are extensions
of their construction.

2 Preliminaries

In this section, we summarize our conventions and setting in §2.1 and cryptographic tools used in our
constructions: oblivious transfer (OT) in §2.3, garbled circuits (GC) with free XOR in §2.4, and additively
homomorphic encryption (HE) in §2.2. Reader familiar with the prerequisites may safely skip to §3.

2.1 Parameters, Notation and Model

We denote symmetric security parameter by t and the asymmetric security parameter, i.e., bitlength of
RSA moduli, by T . Recommended parameters for short-term security (until 2010) are for example t = 80
and T = 1024 [GQ09]. The bitlength of a garbled value is t′ := t + 1 (cf. §2.4 for details). The statistical
correctness parameter is denoted with κ (the probability of a protocol failure is bounded by 2−κ) and the
statistical security parameter with σ. In practice, one can choose κ = σ = 80. The bitlength of protocol
inputs is denoted with ` and the number of inputs with n. We write x` to denote `-bit value x.

We work in the semi-honest model. We note that the method of [KS08] (and thus our work) requires
the use of a weak form of Random Oracle, namely of correlation-robust functions [IKNP03].

2.2 Homomorphic Encryption (HE)

Some of our constructions make black-box usage of a semantically secure homomorphic encryption scheme
with plaintext space (P,+, 0), ciphertext space (C, ∗, 1), and probabilistic polynomial-time algorithms
(Gen,Enc,Dec).

An additively homomorphic encryption scheme allows addition under encryption as it satisfies ∀x, y ∈
P : Dec(Enc(x) ∗ Enc(y)) = x + y. It can be instantiated with a variety of cryptosystems including
[Pai99,DJ01], or the cryptosystem of [DGK07,DGK08b,DGK08a] which is restricted to small plaintext
space P – just to name a few.

For the sake of completeness we mention, that the cryptosystem of [BGN05] allows for an arbitrary
number of additions and one multiplication and fully homomorphic encryption schemes allow to eval-
uate an arbitrary number of additions and multiplications on ciphertexts. Possible candidates are the
cryptosystem of [AS08] (size of ciphertexts grows exponentially in the number of multiplications) or the
recently proposed scheme without such a restriction [Gen09]. However, the size of ciphertexts in these
schemes is substantially larger than that of the purely additively homomorphic schemes.
3 Multiplicative complexity of a function measures the number of AND gates in its circuit (and gives NOT and

XOR gates for free).
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2.3 Oblivious Transfer (OT)

Parallel 1-out-of-2 Oblivious Transfer of m `-bit strings, denoted as OTm
` , is a two-party protocol run

between a chooser C and a sender S. For i = 1, . . . ,m, S inputs a pair of `-bit strings s0
i , s

1
i ∈ {0, 1}`

and C inputs m choice bits bi ∈ {0, 1}. At the end of the protocol, C learns the chosen strings sbi
i , but

nothing about the unchosen strings s1−bi
i whereas S learns nothing about the choices bi.

Efficient OT protocols. We use OTm
` as a black-box primitive which can be instantiated efficiently

with different protocols [NP01,AIR01,Lip03,IKNP03]. For example the protocol of [AIR01] implemented
over a suitably chosen elliptic curve has communication complexity m(6(2t + 1)) + (2t + 1) ∼ 12mt bits
and is secure against malicious C and semi-honest S in the standard model as described in §B. Similarly,
the protocol of [NP01] implemented over a suitably chosen elliptic curve has communication complexity
m(2(2t + 1) + 2`) bits and is secure against malicious C and semi-honest S in the random oracle model.
Both protocols require O(m) scalar point multiplications.

Extending OT efficiently. The extensions of [IKNP03] can be used to efficiently reduce the number of
computationally expensive public-key operations of OTm

` to be independent of m. Their transformation
for semi-honest receiver reduces OTm

` to OTt
t and a small additional overhead: one additional message,

2m(` + t) bits additional communication, and O(m) invocations of a correlation robust hash function
(2m for S and m for C) which is substantially cheaper than O(m) asymmetric operations. Also a slightly
less efficient extension for malicious receiver is given in their paper.

2.4 Garbled Circuits (GC)

The most efficient method for secure evaluation of a boolean circuit C for computationally bounded
players is Yao’s garbled circuit approach [Yao86,LP04]. We briefly summarize the main ideas of this
protocol in the following. The circuit constructor (server S) creates a garbled circuit C̃ with algorithm
CreateGC: for each wire Wi of the circuit, he randomly chooses two garbled values w̃0

i , w̃1
i , where w̃j

i

is the garbled value of Wi’s value j. (Note: w̃j
i does not reveal j.) Further, for each gate Gi, S creates

a garbled table T̃i with the following property: given a set of garbled values of Gi’s inputs, T̃i allows
to recover the garbled value of the corresponding Gi’s output, but nothing else. S sends these garbled
tables, called garbled circuit C̃ to the evaluator (client C). Additionally, C obliviously obtains the garbled
inputs w̃i corresponding to inputs of both parties (details on how this can be done later in §2.4). Now,
C can evaluate the garbled circuit C̃ on the garbled inputs with algorithm EvalGC to obtain the garbled
outputs simply by evaluating the garbled circuit gate by gate, using the garbled tables T̃i. Finally, C
translates the garbled outputs into output values given for the respective players (details below in §2.4).
Correctness of GC follows from the method of how garbled tables T̃i are constructed.

Improved Garbled Circuit with free XOR [KS08]. An efficient method for creating garbled cir-
cuits which allows “free” evaluation of XOR gates was presented in [KS08]. More specifically, a garbled
XOR gate has no garbled table (no communication) and its evaluation consists of XOR-ing its garbled
input values (negligible computation). The other gates, called non-XOR gates, are evaluated as in Yao’s
GC construction [Yao86] with a point-and-permute technique (as used in [MNPS04]) to speed up the
implementation of the GC protocol: the garbled values w̃i = 〈ki, πi〉 ∈ {0, 1}t′ consist of a symmetric
key ki ∈ {0, 1}t and a random permutation bit πi ∈ {0, 1} and hence have length t′ = t + 1 bits. The
permutation bit πi is used to select the right table entry for decryption with the t-bit key ki (recall,
t is the symmetric security parameter). The encryption of the garbled table entries is done with the
symmetric encryption function Encs

k1,...,kd
(m) = m⊕H(k1|| . . . ||kd||s), where d is the number of inputs

of the gate, s is a unique identifier for the specific row in the gate’s garbled table used once, and H is a
suitably chosen cryptographic hash function. Hence, creation of the garbled table of a non-XOR d-input
gate requires 2d invocations of H and its evaluation needs one invocation, while XOR gates are “for
free”.

The main observation of [KS08] is, that the constructor S chooses a global key difference ∆ ∈R {0, 1}t

which remains unknown to evaluator C and relates the garbled values as k0
i = k1

i ⊕∆. (This technique was
subsequently extended in the LEGO paper [NO09] which allows to compose garbled circuits dynamically
with security against malicious circuit constructor). Clearly, the usage of such garbled values allows for
free evaluation of XOR gates with input wires W1,W2 and output wire W3 by computing w̃3 = w̃1 ⊕ w̃2

(no communication and negligible computation). However, using related garbled values requires that the
hash function H used to create the garbled tables of non-XOR gates has to be modeled to be correlation
robust (as defined in [IKNP03]) which is stronger than modeling H as a key-derivation function (standard
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model) but weaker than modeling H as a random-oracle (ROM). In practice, H can be chosen from the
SHA-2 family.

Input/Output Conversion. In secure two-party computation protocols executed between circuit con-
structor S and circuit evaluator C, each of the inputs and outputs of the securely computed functionality
can be given in different forms depending on the application scenario: privately known to one party
(§A.1), secret-shared between both parties (§A.2), or homomorphically encrypted under the public key
of the other party (§A.3). These inputs can be converted from different forms to garbled inputs given
to C. Afterwards, C evaluates the garbled circuit, obtains the garbled outputs, and converts them into
outputs in the needed form.

The resulting communication complexities of these input and output conversion protocols for semi-
honest parties are summarized in Table 1 and a detailed description of these known techniques is given
in §A.

Table 1. Communication complexity for converting `-bit inputs/outputs in different forms to inputs/outputs of
a garbled circuit (parameters defined in §2.1). SS: Secret-Shared, HE: Homomorphically Encrypted.

Input Output

Private S (§A.1) `t′ bits ` bits

Private C (§A.1) OT`
t′ ` bits

SS (§A.2) OT`
t′ ` bits

HE (§A.3) 1 ciphertext + 5`t′ bits + OT`
t′ 1 ciphertext + (` + σ)(5t′ + 1) bits

3 Building Blocks for GC

In this section we present our basic contribution – improved circuit constructions for several frequently
used primitives, such as integer subtraction (§3.1), comparison (§3.2), and selection of the minimum
value and index (§3.3)4. As summarized in Table 2, our improved circuit constructions are smaller than
previous solutions by 33% to 50% when used with the GC of [KS08]. This reduction in size immediately
translates into a corresponding improvement in communication and computation complexity of any GC
protocol built from these blocks. The efficiency improvements are achieved by modifying the underlying
circuits, i.e., by carefully replacing larger (more costly) non-XOR gates (e.g., a 3-input gate) with smaller
non-XOR gates (e.g., a 2-input gate) and (free) XOR gates.

Table 2. Size of efficient circuit constructions for `-bit values and computing the minimum value and index of n
`-bit values (in table entries).

Circuit Standard GC [KS08] This Work (Improvement)

Multiplexer (§C) 8` 4`
Addition/Subtraction (§3.1) 16` 8` 4` (50%)
Multiplication (§3.1) 20`2 − 16` 12`2 − 8` 8`2 − 4` (33%)
Equality Test (§3.2) 8` 4`
Comparison (§3.2) 8` 4` (50%)
Minimum Value + Index (§3.3) ≈ 15`n [NPS99] 8`(n− 1) + 4(n + 1) (47%)

Multiplexer Circuit (MUX). Our constructions use `-bit multiplexer circuits MUX to select one of the
`-bit inputs x` or y` as output z`, depending on the selection bit c. We use the construction of [KS08]
summarized in §C.

4 As noted in §1, Boyar et al. [BPP00,BDP00] had previously proposed improved circuits for addition and
multiplication. Further, the circuits for subtraction and comparison can be relatively naturally derived from
the same ideas. We leave these building blocks in our presentation for completeness and readability.
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3.1 Integer Addition, Subtraction and Multiplication

Addition circuits (ADD) to add two unsigned integer values x`,y` can be efficiently composed from a
chain of 1-bit adders (+), often called full-adders, as shown in Fig. 1. (The first 1-bit adder has constant
input c1 = 0 and can be replaced by a smaller half-adder). Each 1-bit adder has as inputs the carry-in
bit ci from the previous 1-bit adder and the two input bits xi, yi. The outputs are the carry-out bit
ci+1 = (xi ∧ yi) ∨ (xi ∧ ci) ∨ (yi ∧ ci) and the sum bit si = xi ⊕ yi ⊕ ci (the latter can be computed “for
free” using “free XOR” [KS08]). The efficient construction of a 1-bit adder shown in Fig. 2 computes
the carry-out bit as ci+1 = ci ⊕ ((xi ⊕ ci)∧ (yi ⊕ ci)). Overall, the efficient construction for a 1-bit adder
consists of four free XOR gates and a single 2-input AND gate which has size 22 = 4 table entries. The
overall size of the efficient addition circuit is

∣∣∣ADD`
∣∣∣ = ` · |+| = 4` table entries.

x! y! x1 y1y2x2

s!+1 s! s2 s1

. . . +++ c2c3 0
ADD

Fig. 1. Addition Circuit (ADD)

ci+1 ∧

xi yi

ci

+
si

Fig. 2. Improved 1-bit Adder (+)

Subtraction in two’s complement representation is defined as x`−y` = x`+ȳ`+1. Hence, a subtraction
circuit (SUB) can be constructed analogously to the addition circuit from 1-bit subtractors (−) as shown
in Fig. 3. Each 1-bit subtractor computes the carry-out bit ci+1 = (xi ∧ ȳi) ∨ (xi ∧ ci) ∨ (ȳi ∧ ci) and
the difference bit di = xi ⊕ ȳi ⊕ ci. We instantiate the 1-bit subtractor efficiently as shown in Fig. 4 to
compute ci+1 = xi ⊕ ((xi ⊕ ci) ∧ (yi ⊕ ci)) with the same size as the 1-bit adder.

x! y! x1 y1y2x2

d!+1 d! d2 d1

. . . −−− c2c3 1
SUB

Fig. 3. Subtraction Circuit (SUB)

ci+1 ∧

xi yi

ci

di

−

Fig. 4. Improved 1-bit Subtractor (−)

Multiplication circuits (MUL) to multiply two `-bit integers x`,y` can be constructed according to
the “school method” for multiplication, i.e., adding up the bitwise multiplications of yi and x` shifted
corresponding to the position: x` · y` =

∑`
i=1 2i−1(yi · x`). This circuit is composed from `2 of 1-bit

multipliers (2-input AND gates) and (`−1) of `-bit adders. Using the efficient implementation for adders,
the size of the multiplication circuit is improved to 4`2 +4`(`− 1) = 8`2− 4` table entries. Alternatively,
for multiplication of large `-bit numbers, a circuit based on Karatsuba-Ofman multiplication [KO62] of
size approximately O(`1.6) is more efficient.
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3.2 Integer Comparison

We present improved circuit constructions for comparison of two `-bit integers x` and y`, i.e.,

z =
[
x` > y`

]
:=

{
1 if x` > y`,
0 else.

Note that this functionality is more general than checking equality of `-bit integers x` and y`, i.e.,
z =

[
x` = y`

]
, for which an improved construction was given in [KS08].

As shown in Fig. 5, a comparison circuit (CMP) can be composed from ` sequential 1-bit compara-
tors (>). (The first 1-bit comparator has constant input c1 = 0 and can be replaced by a smaller gate).
Our improved instantiation for a 1-bit comparator shown in Fig. 6 uses one 2-input AND gate with 4
table entries and three free XOR gates. Note, this improved bit comparator is exactly the improved bit
subtractor shown in Fig. 4 restricted to the carry output:

[
x` > y`

]
⇔

[
x` − y` − 1 ≥ 0

]
which coincides

with an underflow in the corresponding subtraction denoted by subtractor’s most significant output bit
d`+1. The size of this comparison circuit is

∣∣∣CMP`
∣∣∣ = ` · |>| = 4` table entries.

z

. . .

x! y! x1 y1y2x2

>>> c2c3 0
CMP

Fig. 5. Comparison Circuit (CMP)

xi yi

ci+1

ci∧
>

Fig. 6. Improved 1-bit Comparator (>)

Improved comparison circuits for
[
x` < y`

]
,

[
x` ≥ y`

]
, or

[
x` ≤ y`

]
can be obtained from the im-

proved circuit for
[
x` > y`

]
by interchanging x` with y` and/or setting the initial carry to c1 = 1.

3.3 Minimum Value and Minimum Index

Finally, we show how the improved blocks presented above can be combined to obtain an improved
minimum circuit (MIN) which selects the minimum value m` and minimum index i of a list of n `-bit
values x`

0, . . . ,x
`
n−1, i.e., ∀j ∈ {0, . . . , n − 1} : (m` < x`

j) ∨ (m` = x`
j ∧ i ≤ j). E.g., for the list 3, 2, 5, 2

the outputs would be m` = 2 and i = 1 as the leftmost minimum value of 2 is at position 1. W.l.o.g. we
assume that n is a power of two, so the minimum index can be represented with log n bits.

x!
0 x!

1 x!
2 x!

3 x!
n−1x!

n−2x!
n−4 x!

n−3

m! ilog n

min min

min

m!
1 i11 i11m!

1

m!
2 i22

min min

min

min

. . .

. . .

MIN

Fig. 7. Minimum Circuit (MIN)

m!
d,L

m!
d+1

m!
d,R

CMP>

MUX

idd,L idd,R

id+1
d+1

MUX
min

Fig. 8. Minimum Block (min)

Performance improvement of MIN mainly comes from the improved building blocks for integer com-
parison. We shave off an additive factor by carefully arranging tournament-style circuit so that some of
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the index wires can be reused and eliminated. That is, at depth d of the resulting tree we keep track
of the `-bit minimum value m` of the sub-tree containing 2d values but store and propagate only the d
least significant bits idd of the minimum index.

More specifically, the minimum value and minimum index are selected pairwise in a tournament-
like way using a tree of minimum blocks (min) as shown in Fig. 7. As shown in Fig. 8, each minimum
block at depth d gets as inputs the minimum `-bit values m`

d,L and m`
d,R of its left and right subtrees

TL, TR and the d least significant bits of their minimum indices idd,L and idd,R, and outputs the minimum
`-bit value m`

d+1 and (d + 1)-bit minimum index id+1
d+1 of the tree. First, the two minimum values are

compared with a comparison circuit (cf. §3.2). If the minimum value of TL is bigger than that of TR

(in this case, the comparison circuit outputs value 1), m`
d+1 is chosen to be the value of TR with an

`-bit multiplexer block (cf. §C). In this case, the minimum index id+1
d+1 is set to 1 concatenated with

the minimum index of TR using another d-bit multiplexer. Alternatively, if the comparison yields 0, the
minimum value of TL and the value 0 concatenated with the minimum index of TL are output. Overall,
the size of the efficient minimum circuit is

∣∣∣MIN`,n
∣∣∣ = (n−1) ·(

∣∣∣CMP`
∣∣∣+∣∣∣MUX`

∣∣∣)+∑log n
j=1

n
2j

∣∣MUXj−1
∣∣ =

8`(n− 1) + 4n
∑log n

j=1
j−1
2j < 8`(n− 1) + 4n(1 + 1

n ) = 8`(n− 1) + 4(n + 1).
Our method of putting the minimum blocks together in a tree (cf. Fig. 7) is non-trivial: If the

minimum blocks would have been arranged sequentially (according to the standard selection algorithm
to find the minimum), the size of the circuit would have been (n−1) · (

∣∣∣CMP`
∣∣∣+ ∣∣∣MUX`

∣∣∣+ ∣∣∣MUXlog n
∣∣∣) =

8`(n− 1) + 4(n− 1) log n table entries which is less efficient than the tree.
In previous work [NPS99], a circuit for computing first-price auctions (which is functionally equivalent

to computing the maximum value and index) with a size of approximately 15`n table entries is mentioned
over which our explicit construction improves by a factor of approximately 15

8 .

4 Applications

We now describe how our efficient circuit constructions (§3) can be applied to improve previous solutions
for several applications. We note that constructions of this section are not novel and may be folklore
knowledge. We explicate them for concreteness, and use them to demonstrate the usefulness of our
building blocks and to arrive at performance estimates to form a baseline for future protocols.

4.1 Integer Comparison (Millionaires Problem)

The “Millionaires problem” was introduced by Yao in [Yao82] as motivation for secure compuation:
two millionaires want to securely compare their respective private input values (e.g., their amount of
money) without revealing more information than the outcome of the comparison to the other party.
More concretely, client C holds a private `-bit value x` and server S holds a private `-bit value y`. The
output bit z = [x` > y`] should be revealed to both.

We obtain an efficient comparison protocol by evaluating the comparison circuit of §3.2 with the GC
protocol of [KS08] and an efficient OT protocol. Our protocol, when executed without precomputation
has asymptotic communication complexity 5`t+OT`

t bit with symmetric security parameter t (cf. §2.1).
In many practical application scenarios it is beneficial to shift as much of the computation and com-

munication cost of a protocol into a setup (precomputation) phase, which is executed before the parties’
inputs are known, while the parties’ workload is low. In the following we apply a folklore technique, which
demonstrates that GC protocols are ideally suited for precomputation as (in contrast to many protocols
based on homomorphic encryption) almost their entire cost can be shifted into the setup phase.

Millionaires with setup. GC protocols allow to move all expensive operations (i.e., computationally
expensive OT and creation of GC, as well as the transfer of GC which dominates the communication
complexity) into the setup phase. The idea is to create and transfer the garbled circuit in the setup phase,
and pre-compute the OTs [Bea95]: for this, the parallel OT protocol is run on randomly chosen (by C
and S) values of corresponding sizes (instead of private inputs of C and pairs of garbled input values of
S). Then, in the online phase, C uses its randomly chosen value to mask his private inputs, and sends
them to S. S replies with encryptions of wire’s garbled inputs using his random values from the setup
phase. Which garbled input is masked with which random value is determined by C’s message. Finally,
C can use the masks he received from the OT protocol in the setup phase to exactly decrypt the correct
garbled input value.
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More precisely, the setup phase works as follows: for i = 1, . . . , `, C chooses random bits ri ∈R {0, 1}
and S chooses random masks m0

i ,m
1
i ∈R {0, 1}t′ (recall, t′ = t + 1 is the bitlength of garbled values).

Both parties run a OT`
t′ protocol on these randomly chosen values, where S inputs the pairs m0

i ,m
1
i and

C inputs ri and C obliviously obtains the mask mi = mri
i . Additionally, S creates a garbled circuit C̃

with garbled inputs x̃0
i , x̃

1
i and ỹ0

i , ỹ1
i and sends C̃ together with the output decryption table to C. This

message has the size 4`t′ + 1 ∼ 4`t bits. Overall, the setup phase has a slightly smaller communication
complexity than the Millionaires protocol without setup described above.

In the online phase, S sends the garbled values ỹ` corresponding to his input y` to C and the
online part of the OT protocol is executed: for each i = 1, . . . , `, C masks its input bits xi with ri

as Xi = xi ⊕ ri and sends these masked bits to S. S responds with the masked pair of t′-bit strings〈
M0

i ,M1
i

〉
=

〈
m0

i ⊕ x̃0
i ,m

1
i ⊕ x̃1

i

〉
if Xi = 0 or

〈
M0

i ,M1
i

〉
=

〈
m0

i ⊕ x̃1
i ,m

1
i ⊕ x̃0

i

〉
otherwise. C obtains〈

M0
i ,M1

i

〉
and decrypts x̃i = Mri

i ⊕mi. Using the garbled inputs x̃`, ỹ`, C evaluates the garbled circuit
C̃, obtains the result from the output decryption table and sends it back to S. Overall, in the online
phase `t′ + 2`t′ + 1 ∼ 3`t bits are sent.

Cost Evaluation. In the following we show how the GC-based comparison protocol outperforms those
based on homomorphic encryption:

Computation Complexity. As our improved GC for integer comparison consists of no more than ` non-
XOR 2-to-1 gates (cf. comparison circuit in §3.2), C needs to invoke the underlying cryptographic hash-
function (e.g., SHA-256 for t = 128 bit symmetric security) exactly ` times to evaluate the GC (cf.
§2.4). All other operations are negligible (XOR of t-bit strings). Hence, the computational complexity of
the online phase of our protocol is negligible as compared to that of protocols based on homomorphic
encryption. Even with an additional setup phase, those protocols need to invoke a few modular operations
for each input bit which are usually by several orders of magnitude more expensive than the evaluation
of a cryptographic hash function used in our protocols. Further the computational complexity of the
setup phase in our protocol is more efficient than in protocols based on homomorphic encryption when
using efficient OT protocols implemented over elliptic curves and efficient extensions of OT for a large
number of inputs (cf. §2.3).

Communication Complexity. Table 3 shows that also the communication complexity of our protocol is
much lower than that of previous protocols which are based on homomorphic encryption. As underlying
OT`

t′ protocol we use the protocol of [AIR01] implemented over a suitably chosen elliptic curve and using
point compression described in §B. This protocol has asymptotic communication complexity 12`t bits
and is secure in the standard model. (Using the protocol of [NP01] which is secure in the random oracle
model would result in communication complexity 6`t bits and much lower computation complexity.) The
chosen values for the security parameters correspond to standard recommendations for short-term (upto
2010), medium-term (upto 2030) and long-term security (after 2030) [GQ09].

Table 3. Asymptotic communication complexity of comparison protocols on `-bit values. Parameters defined in
§2.1: ` = 16, κ = 40, short-term security: t = 80, T = 1024, medium-term security: t = 112, T = 2048, long-term
security: t = 128, T = 3082.

Communication Previous Work This Work
Complexity [Fis01] [BK04] [DGK07] Setup Phase Online Phase Total

Asymptotic (κ + 1)`T 4`T 2`T 16`t 3`t 19`t

short-term 82 kByte 8 kByte 4 kByte 2.5 kByte 0.5 kByte 3.0 kByte
medium-term 164 kByte 16 kByte 8 kByte 3.5 kByte 0.7 kByte 4.2 kByte
long-term 246 kByte 24 kByte 12 kByte 4.0 kByte 0.8 kByte 4.8 kByte

4.2 First-Price Auctions

In standard auction systems such as ebay, the auctioneer learns the inputs of all bidders and hence can
deduce valuable information about the bidding behavior of unsuccessful bidders or cheat while computing
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the auction function depending on bidders’ input values. To overcome this, a secure protocol can be used
instead. Bidders provide their bids in a “smartly” encrypted form to the protocol which allows the
auctioneer to compute the auction function without learning the bids. In the following we show how our
constructions can be used to improve two previously proposed secure auction systems: one in which all
bids are collected before the auction function is computed (Offline Auctions), and another one where
bids are input dynamically and the current highest bid is published (Online Auctions).

Offline Auctions. In the offline auction system of [NPS99], the auction function is computed by two
parties, an auction issuer and the auctioneer, who are assumed not to collude. The auction issuer creates
a garbled circuit which computes the auction function and sends it to the auctioneer. For each of the
bidders’ input bits b, a proxy-OT protocol is run, where the auction issuer inputs the two complementary
garbled input values b̃0, b̃1 of the garbled circuit, the bidder inputs b and the auctioneer obtains the
corresponding garbled value b̃. Then, the auctioneer evaluates the garbled circuit on the garbled inputs
and obtains the outcome of the auction as output.

In order to run a first-price auction which outputs the maximum bid and the index of the maximum
bidder, our improved minimum circuit of §3.3 can be used. This circuit is substantially smaller and hence
the resulting protocol is more efficient than the circuit used in [NPS99] as shown in Table 2.

Online Auctions. In the following we show that our GC-based comparison protocol outperforms the
comparison protocol of Damg̊ard, Geisler and Kroig̊ard presented in [DGK07] for the online auction
scenario.

The auction system proposed in [DGK07,DGK08a,DGK08b] extends the idea of splitting the com-
putation of the auction function between two parties, the auctioneer (called server) and another party
(called assisting server) who are assumed not to collude. Each bidder can submit a maximum bid b which
he secret-shares between server and assisting server over respective secure channels. Afterwards, the bid-
der can go offline, while the server and assisting server run a secure comparison protocol to compare
the secret-shared maximum bid with the publicly known value of the currently highest bid to keep track
which bidder is still “in the game”. A detailed description of the scenario can be found in [DGK08b].

Our protocol uses the efficient comparison protocol of §4.1 with inputs given in different forms: the
bid is secret-shared between both players (cf. §A.2 for simple folklore technique to use such inputs in GC)
and the other input is publicly known to both parties (e.g., can be treated as a private input of circuit
constructor S). The resulting circuit-based protocol for online auctions has exactly the same performance
as our solution for the Millionaires problem described in §4.1 with the same efficiency improvements over
previous solutions. In particular, the possibility to move all expensive operations into the setup phase,
which can be executed during idle times (whenever no new bids are received), is very beneficial for this
application as this enables the bidders to instantly see if their current bid was successful or if another
bidder meanwhile gave a higher bid. This feature is important towards the end of the auction, where
the frequency of bids is high. We further recall that the workload of the setup phases can be reduced by
extending OTs efficiently (cf. §2.3).

4.3 Minimum Distance

Finally, we give an efficient protocol for secure computation of the minimum distance (or nearest neighbor)
between a private query point Q, held by client C, and an ordered list of private points P0, . . . , Pn−1 (called
database), held by server S. The protocol consists of two sub-protocols: the first sub-protocol computes
for i = 1, . . . , n the encrypted distance JδiK of the query point Q to each point Pi in the database,
using a suitably chosen homomorphic encryption scheme, and outputs these encrypted distances to S.
The second sub-protocol securely selects the minimum value and index of these encrypted distances and
outputs the minimum distance δmin and minimum index imin to C.

Distance Computation. We sketch the sub-protocols to securely compute the distance JδiK between
query point Q and points Pi in the database next.

Hamming Distance. The Hamming distance between two points P = (p1, . . . , pm) and Q = (q1, . . . , qm)
with pj , qj ∈ {0, 1} is defined as dH(P,Q) :=

∑m
j=1 pj ⊕ qj =

∑m
j=1(1 − pj)qj + pj(1 − qj). With an

additively homomorphic cryptosystem, the Hamming distance can be computed as follows: C generates a
public-key pk and corresponding secret-key and sends (the verifiably correct) pk and bitwise homomorphic
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encryptions of Q, Jq1K, . . . , JqmK, to S. As computing the Hamming distance is a linear operation, S can
compute the encrypted Hamming distance to each point P = Pi in its database as JδiK = JdH(P,Q)K
from JqjK and pj using standard techniques as proposed in [JP09].

Euclidean Distance. The Euclidean distance can be seen as an extension of the Hamming distance
from 1-bit coordinates to `-bit coordinates, i.e., for j = 1, . . . ,m : pj , qj ∈ {0, 1}`. The Euclidean

distance is then defined as dE(P,Q) :=
√∑m

j=1(pj − qj)2. As the Euclidean distance is not negative,
it is sufficient to compute the square of the Euclidean distance instead, in order to find the minimum
(or maximum) Euclidean distance: dE(P,Q)2 =

∑m
j=1(pj − qj)2. The encryption of the square of the

Euclidean distance Jδ2
i K = JdE(Pi, Q)2K can be computed analogously to the protocol for the Hamming

distance by using additively homomorphic encryption which allows for at least one multiplication (cf.
§2.2). Alternatively, when using an additively homomorphic encryption scheme, one can run an additional
round for multiplication as used in [EFG+09].

Minimum Selection. After having securely computed the homomorphically encrypted distances JδiK
held by S, the minimum and minimum index of these values can be selected by converting these ho-
momorphically encrypted values to garbled values as described in §A.3 and securely evaluating the
minimum circuit of §3.3. The asymptotic communication complexity of this minimum selection protocol
is 13`nt bits for the garbled circuits (when GCs are pre-computed), n homomorphic ciphertexts, and
OTn`

t′ . The number of homomorphic ciphertexts can be further reduced using packing (§A.3), and the
number of OTs can be reduced to a constant number of OTs (§2.3). As for the other application scenarios
described before, all expensive operations can be moved into a setup phase and the entire protocol has
a constant number of rounds.

Our minimum selection protocol can also be used as a provably secure5 replacement for the minimum
selection protocol of [Ker08], which was used in the context of privacy-preserving benchmarking. In this
scenario, mutually distrusting companies want to compare their key performance indicators (KPI) with
the statistics of their peer group using an untrusted central server.
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A Input/Output Conversion Protocols

A.1 Private Inputs and Outputs

Private S Input: Inputs privately known to the circuit constructor S are easiest to deal with. For each
of these inputs i, S sends the garbled value w̃vi

i corresponding to the plain value vi to evaluator C. As
described in [PSS09], in case of semi-honest constructor (i.e., with no cut-and-choose), the inputs of
S can also be securely incorporated into the garbled circuit. This optimization avoids to transfer any
additional data for S’s private inputs and the size of the GC can be reduced as well. However, in many
applications it is beneficial even in the semi-honest scenario to separate conversion of the inputs from
creation of the garbled circuit, as this allows S to create the garbled circuit in an offline pre-computation
phase already before its private inputs are known.

Private C Input: For private inputs wi of the evaluator C, both parties execute an OT protocol for each
input bit in which constructor S inputs the two garbled t′-bit values w̃0

i , w̃1
i and C inputs its plain value

vi to obtain w̃vi
i as output. For ` input bits, the OTs can be executed in a parallel OT`

t′ protocol which
can efficiently be extended to OTt

t as described in 2.3.

Private S Output: If the output of the functionality is a private output wi of the evaluator C, constructor
S provides C with the output decryption table for wi, i.e., the permutation bit πi chosen when creating
the garbled value w̃0

i =
〈
k0

i , πi

〉
.

Private C Output: For private outputs wi of the constructor S, evaluator C does not get an output
decryption table but sends the obtained permutation bit πi of the obtained garbled value w̃i = 〈ki, πi〉
back to S who can deduce the corresponding plain value from this. Clearly, this works only if C is semi-
honest as otherwise he could easily flip the output bit. This can be prevented by requiring C to send the
output key ki instead.
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A.2 Secret-Shared Inputs and Outputs

Secret-Shared Input: As proposed in [FPRS04], a bit b can be secret-shared between C holding share bC
and S holding share bS , with b = bC ⊕ bS . A secret-shared input bit b can be converted into a garbled
input b̃ using an OT`

t′ protocol: C inputs bC and S inputs the two corresponding garbled values in the
usual order b̃0, b̃1 if bS = 0 or swaps them to b̃1, b̃0 otherwise. It is easy to verify that C obliviously obtains
the correct garbled value b̃ for the shared bit b.

Secret-Shared Output: A similar method can be used for a secret-shared output bit b. S chooses a random
share bS and provides C with an output decryption table (cf. private output to C) in the correct order
in case bS = 0 or with swapped entries otherwise. C decrypts the garbled output to bC which satisfies
b = bC ⊕ bS .

A.3 Homomorphically Encrypted Inputs and Outputs

In the scenario of secure two-party computation based on homomorphic encryption, one party, say
client C, generates a key-pair of the homomorphic encryption scheme and sends the (verifiably correct)
public key and its inputs encrypted under the public key to S. Afterwards, S can perform operations
on the ciphertexts which result in corresponding operations on the encrypted plaintext data (using the
homomorphic property of the cryptosystem). In order to compute operations that are not compatible
with the homomorphic property (e.g., multiplication of two ciphertexts encrypted with an additively
homomorphic encryption scheme), additional communication rounds must be performed. In the following
we show how computing on homomorphically encrypted data can be combined with a garbled circuit to
efficiently evaluate non-linear functions, such as comparison, minimum search, or other functionalities in
a constant number of rounds.

Homomorphically Encrypted Input: If S holds an `-bit value Jx`K, additively homomorphically encrypted
under C’s public key, this value can be converted into a garbled value x̃` output to C as follows: S chooses
a random value r from the plaintext space P and adds this to the encrypted value: JyK = Jx` + rK. In
order to avoid an overflow, this requires that ` + κ ≤ |P | for a statistical correctness parameter κ (e.g.,
κ = 40). S sends JyK to C who decrypts into y. Afterwards, both parties evaluate a garbled circuit which
takes off the additive blinding: the private input of S into this garbled circuit are the ` least significant
bits of r, r` = r mod 2`, and C inputs the ` least significant bits of y, y` = y mod 2`. The garbled
circuit is an `-bit subtraction circuit (cf. §3.1) which recovers the plaintext value from the blinded value
as x̃` = ỹ`− r̃`. This conversion protocol from additively homomorphically encrypted values into garbled
values was used in [BPSW07,JP09]. A detailed proof and efficiency improvements (by packing together
multiple values and converting the packed value at once) is given in [BFK+09].

Homomorphically Encrypted Output: A garbled `-bit output x̃`, held by C after having evaluated the
garbled circuit, can be converted back into a homorphic encryption Jx`K held by S as follows: S chooses a
random (`+σ)-bit value r`+σ ∈R {0, 1}`+σ, where σ is a statistical security parameter (e.g., σ = 80) and
` + σ ≤ |P | to avoid an overflow. Now, a garbled (` + σ)-bit addition circuit (cf. §3.1) is evaluated which
computes ỹ`+σ = x̃` + r̃`+σ: C inputs x̃` into this circuit and S provides C with the garbled value r̃`+σ

together with an output decryption table for y`+σ. After evaluation of GC, C obtains y`+σ, encrypts it
under his public key of the additively homomorphic cryptosystem and sends the ciphertext Jy`+σK to S.
S can subtract the blinding value r`+σ under encryption and gets Jx`K. This output conversion protocol
can be proven secure analogous to the proof for homomorphically encrypted inputs [BFK+09].

B Efficient OT protocol of [AIR01] over elliptic curves

In the following we describe the efficient two-move OT protocol of [AIR01] instantiated with elliptic
curves as proposed in [Lip03] in detail. The protocol of [AIR01] is based on a homomorphic, semantically
secure cryptosystem with verifiability property, i.e., the validity of a public key pk and the validity of a
ciphertext c with respect to a valid pk can efficiently be checked. In general, e.g., for the Paillier scheme
[Pai99], additional Zero-Knowledge Proofs-of-Knowledge (ZK-PoK) are needed to prove these properties.
As outlined in [AIR01], the multiplicatively homomorphic ElGamal scheme enjoys verifiability without
such ZK-PoKs, as it can easily be checked whether a given element g has prime order q by checking
gq ?= 1.
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EC-ElGamal. For efficiency reasons, ElGamal can be implemented over a suitably chosen elliptic curve
(EC-ElGamal) which results in the protocol shown in Protocol 1. Recall, an elliptic curve over a prime
field Fp is parametrized by the six-tuple T = (p, a, b, P, q, h), where p is a 2t-bit prime (t is the symmetric
security parameter), a, b ∈ Fp specify the equation E : y2 ≡ x3 + ax + b mod p, P = (xP , yP ) ∈ E(Fp)
is the base point with large prime order q (2t bit in the curves we choose) and h = #E(Fp)/q is a small
cofactor. O denotes the point at infinity. Each point can be represented with 2t + 1 bits using point
compression which is computationally more expensive than the uncompressed representation which has
size 4t bits [SEC00a].

Point embedding. We assume, that the strings s0, s1 are short enough to be embedded into points on
the elliptic curve. A probabilistic algorithm for embedding a string into the x-coordinate of a point was
proposed in [Kob87]: let κ be a statistical correctness parameter (e.g., κ = 10 is proposed in [Kob87]).
Then, assuming 0 ≤ s < q/2κ − 1, we try to append κ bits to s until we obtain an x, 2κs ≤ x <
2κ(s + 1) < q, such that f(x) = x3 + ax + b is a square in Fp (this can efficiently be tested by computing

the Legendre-Symbol and testing if
(
x
p

) ?= 1). Now, s is embedded into the point S = (x,
√

f(x)) ∈ E(Fp).
Obviously, S can be decoded back into string s by dropping the last κ bits of its x-coordinate.

Choice of Elliptic Curves. An implementation could use the curves secp160, secp224r1, resp. secp256r1
from the SECG standard [SEC00b,SEC00a,Bro05] which corresponds to symmetric security levels of
t = 80, 112, resp. 128 bit. For these curves, the DDH assumption is assumed to hold as they are chosen
verifiably at random [SEC00b,SEC00a] compliant with the recommendations in many international stan-
dards such as the Digital Signature Standard of NIST [FIP00]. Additionally, these curves allow efficient
checking whether a point G is a scalar multiple of the base point P , as they have cofactor h = 1 [SEC00b],
which implies that each point G 6= O that lies on the curve, i.e., satisfies E, is a scalar multiple of P
[CF05].

Protocol 1 OT1
` protocol of [AIR01] instantiated with EC-ElGamal

Input C: bit b ∈ {0, 1}
Input S: pair of strings s0, s1 ∈ {0, 1}`

Output C: string sb

Output S: success ∈ {⊥,>}

1: Setup phase: C generates EC-ElGamal keypair (chooses secret key s ∈R Zq and computes public key Q = [s]P )
and sends public key Q to S.

2: Setup phase: S verifies that Q
?
∈ E and aborts with success = ⊥ otherwise.

3: C encrypts B = O or B = P with EC-ElGamal and public key Q depending on b:
choose r ∈R Zq, compute C1 = [r]P , C2 = [r]Q = [r + s]P , if b = 1 then C2 = C2 + P .

4: C sends C1, C2 to S.

5: S verifies that C1, C2

?
∈ E and aborts with success = ⊥ otherwise.

6: S maps s0 to point S0 and s1 to point S1.
7: S computes (C0

1 , C0
2 ) as conditional disclosure of S0 conditioned on B = O:

choose r0, s0 ∈R Zq, compute C0
1 = [s0]C1 + [r0]P , C0

2 = [s0]C2 + [r0]Q + S0.
8: S computes (C1

1 , C1
2 ) as conditional disclosure of S1 conditioned on B = P :

choose r1, s1 ∈R Zq, compute C1
1 = [s1]C1 + [r1]P , C1

2 = [s1](C2 − P ) + [r1]Q + S1.
9: S sends C0

1 , C0
2 , C1

1 , C1
2 to C and outputs success = > to S.

10: C decrypts Sb = Cb
2 − [s]Cb

1 and maps this point to the string sb which is output to C.

Communication Complexity. The asymptotic communication complexity of the OT1
` protocol given in

Protocol 1 is 12t bits, as overall 6 points of size 2t+1 bits each are sent. The corresponding parallel OTm
`

protocol can be easily obtained by running this protocol m times in parallel (with same setup phase)
and has asymptotic communication complexity 12mt bits.

Theorem 1 (Security). The OT1
` protocol given in Protocol 1 is secure against malicious C and semi-

honest S provided the DDH assumption holds for the underlying elliptic curve.
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Proof. The proof of theorem 1 follows directly from the proof for the OT protocol in [AIR01, Sect. 5.1]
and the proof that the semantic security of ElGamal is equivalent to the Decision Diffie-Hellman (DDH)
assumption in the underlying group [TY98].

Hashed EC-ElGamal. Instead of using EC-ElGamal, the semantically secure Hashed EC-ElGamal en-
cryption scheme [Sho04] can be used. In hashed EC-ElGamal, the message s is not embedded into a point
S on the elliptic curve. Instead, a random point R on the elliptic curve is encrypted from which a sym-
metric encryption key Hκ(R) for encryption of s is derived using an entropy smoothing hash function Hκ.
As no point embedding is needed in hashed EC-ElGamal, this reduces the computational complexity of
S. However, the communication complexity is slightly increased by |s| bits as the ciphertext additionally
contains the symmetric encryption of the message s.

C Improved Multiplexer [KS08]

An `-bit multiplexer circuit MUX selects its output z` to be its left `-bit input x` if the input selection
bit c is 0, respectively its right `-bit input y` otherwise. As shown in Fig. 9, the block can be composed
from ` parallel Y blocks that are 1-bit multiplexers.

The Y gates have three inputs xi, yi, c and one output zi. They could be instantiated with a 3-to-1
gate of size 23 = 8 table entries. According to [KS08], Y blocks can be instantiated more efficiently, as
shown in Fig. 10: this instantiation needs only a 2-input AND gate of size 22 = 4 table entries and two
free XOR gates resulting in an overall improvement by a factor of two (as 4 instead of 8 table entries
need to be garbled and transferred in the GC protocol). The efficient `-bit multiplexer construction has
size

∣∣∣MUX`
∣∣∣ = ` · |Y| = 4` table entries.

x1 y1

Y

z1

. . .

x! y!

Y

z!

y2x2

Y

z2

c

MUX

. . .

Fig. 9. Multiplexer Circuit
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Fig. 10. Improved Y Block [KS08]


